bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
نویسندگان
چکیده
منابع مشابه
A New Binary Particle Swarm Optimisation Algorithm for Feature Selection
Feature selection aims to select a small number of features from a large feature set to achieve similar or better classification performance than using all features. This paper develops a new binary particle swarm optimisation (PSO) algorithm (named PBPSO) based on which a new feature selection approach (PBPSOfs) is developed to reduce the number of features and increase the classification accu...
متن کاملA Binary Pso-aco Hybrid Algorithm for Feature Subset Selection
Feature Selection is the process of selecting a subset of features available, allowing a certain objective function to be optimized, from the data containing noisy,irrelevant and redundant features. This paper presents a novel feature selection method that is based on hybridization of ACO with a binary PSO to obtain excellent properties of two algorithms by synthesizing them and aims at achievi...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملa hybrid feature subset selection algorithm for analysis of high correlation proteomic data
pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. the surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (seldi-tof ms) has been used to generate proteomic profiles from biological fluids. mass spectrometry yields redundant noisy data that the most data points are irrelevant features ...
متن کاملCancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3049547